Inflow and initial conditions for direct numerical simulation based on adjoint data assimilation

نویسندگان

  • A. Gronskis
  • Dominique Heitz
  • Étienne Mémin
چکیده

A method for generating inflow conditions for direct numerical simulations (DNS) of spatially-developing flows is presented. The proposed method is based on variational data assimilation and adjoint-based optimization. The estimation is conducted through an iterative process involving a forward integration of a given dynamical model followed by a backward integration of an adjoint system defined by the adjoint of the discrete scheme associated to the dynamical system. The approach’s robustness is evaluated on two synthetic velocity field sequences provided by numerical simulation of a mixing layer and a wake flow behind a cylinder. The performance of the technique is also illustrated in a real world application by using PIV measurements to acquire the database. This method allows to denoise experimental velocity fields and to reconstruct a continuous trajectory of motion fields from discrete and unstable measurements.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Treating strong adjoint sensitivities in tropical eddy-permitting variational data assimilation

A variational data assimilation system has been implemented for the tropical Pacific Ocean using an eddypermitting regional implementation of the MITgcm. The adjoint assimilation system was developed by the Estimation of the Circulation and the Climate of the Ocean consortium, and has been extended to deal with open boundaries. This system is used to adjust the model to match observations in th...

متن کامل

Data assimilation for plume models

We use a four-dimensional variational data assimilation (4D-VAR) algorithm to observe the growth of 2-D plumes from a point heat source. In order to test the predictability of the 4D-VAR technique for 2-D plumes, we perturb the initial conditions and compare the resulting predictions to the predictions given by a direct numerical simulation (DNS) without any 4D-VAR correction. We have studied p...

متن کامل

Application of a New Adjoint Newton Algorithm to the 3D ARPS Storm-Scale Model Using Simulated Data

The adjoint Newton algorithm (ANA) is based on the firstand second-order adjoint techniques allowing one to obtain the ‘‘Newton line search direction’’ by integrating a ‘‘tangent linear model’’ backward in time (with negative time steps). Moreover, the ANA provides a new technique to find Newton line search direction without using gradient information. The error present in approximating the Hes...

متن کامل

On variational data assimilation for 1D and 2D fluvial hydraulics

We address two problems related to variational data assimilation (VDA) as applied to river hydraulics (1D and 2D shallow water models). In real cases, available observations are very sparse (especially during flood events). Generally, they are very few measures of elevation at gauging stations. The first goal of the present study is to estimate accurately some parameters such as the inflow disc...

متن کامل

Discontinuous Galerkin unsteady discrete adjoint method for real-time efficient Tsunami simulations

An unsteady discrete adjoint implementation for a discontinuous Galerkin model solving the shallow water wave equations on the sphere is presented. Its use for tsunami simulations is introduced to reconstruct the initial condition automatically from buoy measurements. Based on this feature, a real-time tsunami model is developed, using several numerical tools such as a high-order discretization...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 242  شماره 

صفحات  -

تاریخ انتشار 2013